1. 사이킷런(Scikit-learn)
- 대표적인 파이썬 머신러닝 모듈
- 다양한 머신러닝 알고리즘을 제공
- 다양한 샘플 데이터를 제공
- 머신러닝 결과를 검증하는 기능을 제공
- BSD 라이선스이기 떄문에 무료로 사용 및 배포가 가능
- 사이킷런 공식 홈페이지
2. LinearSVC
- 클래스를 구분으로 하는 분류 문제에서 각 클래스를 잘 구분하는 선을 그려주는 방식을 사용하는 알고리즘
- 지도학습 알고리즘을 사용하는 학습 전용 데이터와 결과 전용 데이터를 모두 가지고 있어야 사용이 가능
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score
# 학습 데이터를 준비
learn_data = [[0,0], [1,0], [0,1], [1,1]] # 독립변수
learn_label = [0,0,0,1] # 종속변수
# 모델 객체 생성
svc = LinearSVC()
# 학습
svc.fit(learn_data, learn_label)
# 검증 데이터 준비
test_data = [[0,0],[1,0],[0,1],[1,1]]
# 에측
test_label = svc.predict(test_data)
test_label
출력: array([0, 0, 0, 1])
# 결과 검증
print(test_data,'의 예측 결과', test_label)
print('정답률: ',accuracy_score([0,0,0,1],test_label))
출력:
[[0, 0], [1, 0], [0, 1], [1, 1]] 의 예측 결과 [0 0 0 1]
정답률: 1.0
3. Iris DataSet
- 데이터셋 : 특정한 작업을 위해 데이터를 관령성 있게 모아놓은 것
- 사이킷런 데이터셋 페이지
from sklearn.datasets import load_iris
iris = load_iris()
iris
출력:
{'data': array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
...
print(iris['DESCR'])
출력:
.. _iris_dataset:
Iris plants dataset
--------------------
**Data Set Characteristics:**
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988
The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
.. topic:: References
- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
- sepal length in cm : 꽃받침의 길이
- sepal width in cm : 꽃받침의 너비
- petal length in cm : 꽃잎의 길이
- petal width in cm : 꽃잎의 너비
data = iris['data']
feature_names = iris['feature_names']
feature_names
출력:
['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']
import pandas as pd
df_iris = pd.DataFrame(data, columns=feature_names)
df_iris
target = iris['target']
target
target.shape
df_iris['target'] = target
df_iris
from sklearn.model_selection import train_test_split
# train_test_split(독립변수, 종속변수, 테스트사이즈, 시드값 ...)
X_train, X_test, y_train, y_test = train_test_split(df_iris.drop('target', axis=1),
df_iris['target'],
test_size=0.2,
random_state=2023)
X_train.shape, X_test.shape
출력: ((120, 4), (30, 4))
y_train.shape, y_test.shape
출력: ((120,), (30,))
X_train
y_train
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
svc = SVC()
svc.fit(X_train, y_train)
y_pred = svc.predict(X_test)
y_pred
출력:
array([2, 1, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0, 1, 0,
2, 1, 0, 0, 0, 2, 1, 0])
print('정답률', accuracy_score(y_test, y_pred))
출력: 정답률 1.0
# 6.2 2.1 4.1 1.5
y_pred = svc.predict([[6.2, 2.1, 4.1, 1.5]])
y_pred
출력:
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but SVC was fitted with feature names
warnings.warn(
array([1])